Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(4)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385743

RESUMO

The lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.


Assuntos
Monócitos , Pneumonia , Humanos , Neutrófilos , Lipidômica , Lipopolissacarídeos
2.
FEBS Lett ; 598(4): 477-484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302739

RESUMO

Niemann-Pick type C disease (NPCD) is a rare neurodegenerative disorder most commonly caused by mutations in the lysosomal protein Niemann-Pick C1 (NPC1), which is implicated in cholesterol export. Mitochondrial insufficiency forms a significant feature of the pathology of this disease, yet studies attempting to address this are rare. The working hypothesis is that mitochondria become overloaded with cholesterol which renders them dysfunctional. We examined two potential protein targets-translocator protein (TSPO) and steroidogenic acute regulatory protein D1 (StARD1)-which are implicated in cholesterol transport to mitochondria, in addition to glucocerbrosidase 2 (GBA2), the target of miglustat, which is currently the only approved treatment for NPCD. However, inhibiting these proteins did not correct the mitochondrial defect in NPC1-deficient cells.


Assuntos
Doenças Mitocondriais , Doença de Niemann-Pick Tipo C , Fosfoproteínas , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Receptores de GABA/metabolismo
3.
Adv Radiat Oncol ; 9(3): 101404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292889

RESUMO

Purpose: Most of radiation oncology centers rely on set-up skin markings for patient setup during treatment delivery. Permanent dark-ink tattooing is the most popular marking method. COMFORTATTOO is a unicentric, randomized trial testing 2 permanent methods: lancets against an electric marking pen (Comfort Marker 2.0, CM). One substudy was undertaken to test if using the CM translates into a cosmesis, fading, or satisfaction benefit compared with the lancets. Methods and Materials: Patients aged 18 years or older referred to our department to receive RT were recruited. They were randomly assigned, in a 1:1 ratio, to receive set-up markings using lancets or CM. This substudy aimed to recruit all the living participants included in the main study. The primary endpoints were tattoos cosmesis, tattoos fading, and patients' satisfaction 6 months after finishing the RT. Cosmetic and fading assessments were scored on a 5-point ascending scale and patients' satisfaction on a 10-point ascending scale. The trial is registered at ClinicalTrials.gov (number NCT05371795). Results: Between April and September 2022, 92 patients were enrolled (45 assigned to lancets and 47 to CM) and assessed for the outcomes. Patients receiving CM had significantly better cosmetic markings, with a median score of 4.4 (vs 3.7 for lancets, P<.001). On the fading assessment, the CM was associated with lower scores compared with the lancets (median score of 1.3 and 3.3, respectively; P<.001). No differences in patients' satisfaction were observed with either method (median score of 10 for both arms, P=.952). Conclusions: Our substudy results demonstrated that, 6 months after the end of RT, the CM produces better cosmetic markings with less fading compared with the lancets. These differences didn't translate into patients' satisfaction superiority toward any method.

4.
Chem Sci ; 14(34): 9136-9144, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655021

RESUMO

Lysosomal exoglycosidases are responsible for processing endocytosed glycans from the non-reducing end to produce the corresponding monosaccharides. Genetic mutations in a particular lysosomal glycosidase may result in accumulation of its particular substrate, which may cause diverse lysosomal storage disorders. The identification of effective therapeutic modalities to treat these diseases is a major yet poorly realised objective in biomedicine. One common strategy comprises the identification of effective and selective competitive inhibitors that may serve to stabilize the proper folding of the mutated enzyme, either during maturation and trafficking to, or residence in, endo-lysosomal compartments. The discovery of such inhibitors is greatly aided by effective screening assays, the development of which is the focus of the here-presented work. We developed and applied fluorescent activity-based probes reporting on either human GH30 lysosomal glucosylceramidase (GBA1, a retaining ß-glucosidase) or GH31 lysosomal retaining α-glucosidase (GAA). FluoPol-ABPP screening of our in-house 358-member iminosugar library yielded compound classes selective for either of these enzymes. In particular, we identified a class of N-alkyldeoxynojirimycins that inhibit GAA, but not GBA1, and that may form the starting point for the development of pharmacological chaperone therapeutics for the lysosomal glycogen storage disease that results from genetic deficiency in GAA: Pompe disease.

7.
FEBS Lett ; 596(18): 2400-2408, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796054

RESUMO

Glycosphingolipids (GSLs) fulfil diverse functions in cells. Abnormalities in their metabolism are associated with specific pathologies and, consequently, the pharmacological modulation of GSLs is considered a therapeutic avenue. The accurate measurement of in situ metabolism of GSLs and the modulatory impact of drugs is warranted. Employing synthesised sphingosine and sphinganine containing 13 C atoms, we developed a method to monitor the de novo synthesis of glucosylceramide, the precursor of complex GSLs, by the enzyme glucosylceramide synthase (GCS). We show that feeding cells with isotope-labelled precursor combined with liquid chromatography-mass spectrometry (MS)/MS analysis allows accurate determination of the IC50 values of therapeutically considered inhibitors (iminosugars and ceramide mimics) of GCS in cultured cells. Acquired data were comparable to those obtained with an earlier method using artificial fluorescently labelled ceramide to feed cells.


Assuntos
Glucosilceramidas , Esfingosina , Ceramidas/metabolismo , Glucosilceramidas/metabolismo , Glicoesfingolipídeos/metabolismo , Espectrometria de Massas , Esfingosina/farmacologia
8.
J Lipid Res ; 63(5): 100199, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315333

RESUMO

In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson's disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.


Assuntos
Doença de Gaucher , Glucosilceramidase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Ceramidase Ácida , Animais , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidas , Humanos , Psicosina/análogos & derivados , Peixe-Zebra/genética
9.
Chembiochem ; 22(21): 3090-3098, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34459538

RESUMO

Glucocerebrosidase (GBA), a lysosomal retaining ß-d-glucosidase, has recently been shown to hydrolyze ß-d-xylosides and to transxylosylate cholesterol. Genetic defects in GBA cause the lysosomal storage disorder Gaucher disease (GD), and also constitute a risk factor for developing Parkinson's disease. GBA and other retaining glycosidases can be selectively visualized by activity-based protein profiling (ABPP) using fluorescent probes composed of a cyclophellitol scaffold having a configuration tailored to the targeted glycosidase family. GBA processes ß-d-xylosides in addition to ß-d-glucosides, this in contrast to the other two mammalian cellular retaining ß-d-glucosidases, GBA2 and GBA3. Here we show that the xylopyranose preference also holds up for covalent inhibitors: xylose-configured cyclophellitol and cyclophellitol aziridines selectively react with GBA over GBA2 and GBA3 in vitro and in vivo, and that the xylose-configured cyclophellitol is more potent and more selective for GBA than the classical GBA inhibitor, conduritol B-epoxide (CBE). Both xylose-configured cyclophellitol and cyclophellitol aziridine cause accumulation of glucosylsphingosine in zebrafish embryo, a characteristic hallmark of GD, and we conclude that these compounds are well suited for creating such chemically induced GD models.


Assuntos
Cicloexanóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosilceramidase/antagonistas & inibidores , Xilose/farmacologia , Animais , Células Cultivadas , Cicloexanóis/química , Inibidores Enzimáticos/química , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Células HEK293 , Humanos , Conformação Molecular , Xilose/química , Peixe-Zebra
10.
Mol Ther Methods Clin Dev ; 20: 312-323, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33511245

RESUMO

Gaucher disease type 1 (GD1) is an inherited lysosomal disorder with multisystemic effects in patients. Hallmark symptoms include hepatosplenomegaly, cytopenias, and bone disease with varying degrees of severity. Mutations in a single gene, glucosidase beta acid 1 (GBA1), are the underlying cause for the disorder, resulting in insufficient activity of the enzyme glucocerebrosidase, which in turn leads to a progressive accumulation of the lipid component glucocerebroside. In this study, we treat mice with signs consistent with GD1, with hematopoietic stem/progenitor cells transduced with a lentiviral vector containing an RNA transcript that, after reverse transcription, results in codon-optimized cDNA that, upon its integration into the genome encodes for functional human glucocerebrosidase. Five months after gene transfer, a highly significant reduction in glucocerebroside accumulation with subsequent reversal of hepatosplenomegaly, restoration of blood parameters, and a tendency of increased bone mass and density was evident in vector-treated mice compared to non-treated controls. Furthermore, histopathology revealed a prominent reduction of Gaucher cell infiltration after gene therapy. The vector displayed an oligoclonal distribution pattern but with no sign of vector-induced clonal dominance and a typical lentiviral vector integration profile. Cumulatively, our findings support the initiation of the first clinical trial for GD1 using the lentiviral vector described here.

11.
J Lipid Res ; 62: 100018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361282

RESUMO

Deficiency of glucocerebrosidase (GBA), a lysosomal ß-glucosidase, causes Gaucher disease. The enzyme hydrolyzes ß-glucosidic substrates and transglucosylates cholesterol to cholesterol-ß-glucoside. Here we show that recombinant human GBA also cleaves ß-xylosides and transxylosylates cholesterol. The xylosyl-cholesterol formed acts as an acceptor for the subsequent formation of di-xylosyl-cholesterol. Common mutant forms of GBA from patients with Gaucher disease with reduced ß-glucosidase activity were similarly impaired in ß-xylosidase, transglucosidase, and transxylosidase activities, except for a slightly reduced xylosidase/glucosidase activity ratio of N370S GBA and a slightly reduced transglucosylation/glucosidase activity ratio of D409H GBA. XylChol was found to be reduced in spleen from patients with Gaucher disease. The origin of newly identified XylChol in mouse and human tissues was investigated. Cultured human cells exposed to exogenous ß-xylosides generated XylChol in a manner dependent on active lysosomal GBA but not the cytosol-facing ß-glucosidase GBA2. We later sought an endogenous ß-xyloside acting as donor in transxylosylation reactions, identifying xylosylated ceramide (XylCer) in cells and tissues that serve as donor in the formation of XylChol. UDP-glucosylceramide synthase (GCS) was unable to synthesize XylChol but could catalyze the formation of XylCer. Thus, food-derived ß-D-xyloside and XylCer are potential donors for the GBA-mediated formation of XylChol in cells. The enzyme GCS produces XylCer at a low rate. Our findings point to further catalytic versatility of GBA and prompt a systematic exploration of the distribution and role of xylosylated lipids.


Assuntos
Glucosilceramidase
12.
Clin Chim Acta ; 510: 707-710, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32946792

RESUMO

The existence of glucosylated cholesterol (GlcChol) in tissue has recently been recognized. GlcChol is generated from glucosylceramide (GlcCer) and cholesterol through transglucosylation by two retaining ß-glucosidases, GBA and GBA2. Given the abundance of GBA, GlcCer and cholesterol in the skin's stratum corneum (SC), we studied the occurrence of GlcChol. A significant amount of GlcChol was detected in SC (6 pmol/mg weight). The ratio GlcChol/GlcCer is higher in SC than epidermis, 0.083 and 0.011, respectively. Examination of GlcChol in patients with Netherton syndrome revealed comparable levels (11 pmol/mg). Concluding, GlcChol was identified as a novel component in SC and is likely locally metabolized by GBA. The physiological function of GlcChol in the SC warrants future investigation.


Assuntos
Glucosilceramidase , Glucosilceramidas , Colesterol , Humanos , Pele
13.
Essays Biochem ; 64(3): 565-578, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32808655

RESUMO

Lyso-glycosphingolipids are generated in excess in glycosphingolipid storage disorders. In the course of these pathologies glycosylated sphingolipid species accumulate within lysosomes due to flaws in the respective lipid degrading machinery. Deacylation of accumulating glycosphingolipids drives the formation of lyso-glycosphingolipids. In lysosomal storage diseases such as Gaucher Disease, Fabry Disease, Krabbe disease, GM1 -and GM2 gangliosidosis, Niemann Pick type C and Metachromatic leukodystrophy massive intra-lysosomal glycosphingolipid accumulation occurs. The lysosomal enzyme acid ceramidase generates the deacylated lyso-glycosphingolipid species. This review discusses how the various lyso-glycosphingolipids are synthesized, how they may contribute to abnormal immunity in glycosphingolipid storing lysosomal diseases and what therapeutic opportunities exist.


Assuntos
Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Glicoesfingolipídeos/biossíntese , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Terapia de Alvo Molecular/métodos , Ceramidase Ácida/metabolismo , Animais , Humanos , Imunidade , Doenças por Armazenamento dos Lisossomos/imunologia
14.
J Lipid Res ; 60(11): 1851-1867, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31562193

RESUMO

ß-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1-/-), Gba2 (gba2-/-), and double (gba1-/-:gba2-/-) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1-/- larvae (0.09 pmol/fish) but did not increase more in gba1-/-:gba2-/- larvae. GlcCer was comparable in gba1-/- and WT larvae but increased in gba2-/- and gba1-/-:gba2-/- larvae. Independent of Gba1 status, GlcChol was low in all gba2-/- larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency.


Assuntos
Glucosilceramidase/deficiência , Glicoesfingolipídeos/metabolismo , Modelos Biológicos , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo , beta-Glucosidase/metabolismo , Animais , Células Cultivadas , Glucosilceramidase/metabolismo , Peixe-Zebra , beta-Glucosidase/deficiência
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1157-1167, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31051284

RESUMO

BACKGROUND: Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. RESULTS: Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. CONCLUSION: Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes. SIGNIFICANCE: Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction. Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes. UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. ß-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFNγ and IL4 secretion). Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue. Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes.


Assuntos
Adipócitos/metabolismo , Glucosilceramidas/biossíntese , Células T Matadoras Naturais/metabolismo , Adipócitos/citologia , Apresentação de Antígeno , Comunicação Celular , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Glucosilceramidas/metabolismo , Humanos , Resistência à Insulina , Lipídeos/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/citologia
16.
Neurobiol Dis ; 127: 242-252, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30872158

RESUMO

Niemann-Pick type C disease (NPCD) is a neurodegenerative disease associated with increases in cellular cholesterol and glycolipids and most commonly caused by defective NPC1, a late endosomal protein. Using ratiometric probes we find that NPCD cells show increased endolysosomal pH. In addition U18666A, an inhibitor of NPC1, was found to increase endolysosomal pH, and the number, size and heterogeneity of endolysosomal vesicles. NPCD fibroblasts and cells treated with U18666A also show disrupted targeting of fluorescent lipid BODIPY-LacCer to high pH vesicles. Inhibiting non-lysosomal glucocerebrosidase (GBA2) reversed increases in endolysosomal pH and restored disrupted BODIPY-LacCer trafficking in NPCD fibroblasts. GBA2 KO cells also show decreased endolysosomal pH. NPCD fibroblasts also show increased expression of a key subunit of the lysosomal proton pump vATPase on GBA2 inhibition. The results are consistent with a model where both endolysosomal pH and Golgi targeting of BODIPY-LacCer are dependent on adequate levels of cytosolic-facing GlcCer, which are reduced in NPC disease.


Assuntos
Citosol/metabolismo , Endossomos/metabolismo , Glucosilceramidas/metabolismo , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Androstenos/farmacologia , Animais , Citosol/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Camundongos , Proteína C1 de Niemann-Pick/antagonistas & inibidores
17.
Mol Genet Metab ; 125(4): 338-344, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30413389

RESUMO

Fabry disease, a rare, X-linked lysosomal storage disease, arises from deficiency of the lysosomal hydrolase, α-galactosidase A (GLA) which disrupts the catabolism of globo- series glycosphingolipids (GSLs). One potential link between GLA deficiency and vascular dysfunction may be changes in endothelial nitric oxide synthase (eNOS) function. GLA-deficient EA.hy926 cells were obtained by siRNA knockdown of GLA expression and by mutation of GLA with CRISPR/Cas9 gene editing to investigate the effects of GLA deficiency on eNOS. As previously observed with siRNA knockdown of GLA, globotriaosylceramide (Gb3) accumulated in EA.hy926 cells. In contrast, Gb3 did not accumulate in CRISPR/Cas9 gene edited GLA-deficient cells, but instead, globotetraosylceramide (Gb4). However, in both the siRNA and CRISPR/Cas9 models globotriaosylsphingosine (lyso-Gb3) was elevated. As was previously observed with siRNA knockdown of GLA expression, CRISPR/Cas9 GLA-deficient cells had lower eNOS activity. Restoring GLA activity in GLA-deficient cells with exogenous GLA treatment improved eNOS activity. In contrast, treating cells with the glucosylceramide synthase inhibitor, eliglustat, decreased NOS activity. These results suggest that eNOS uncoupling is due to GLA deficiency, and not necessarily due to elevated Gb3 per se. It was observed that lyso-Gb3 inhibits eNOS activity.


Assuntos
Endotélio Vascular/patologia , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Óxido Nítrico Sintase Tipo III/metabolismo , Triexosilceramidas/metabolismo , alfa-Galactosidase/antagonistas & inibidores , Células Cultivadas , Endotélio Vascular/enzimologia , Humanos , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
18.
J Biol Chem ; 293(26): 10042-10058, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29674318

RESUMO

α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession ID GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-d-galactopyranoside substrate (Km = 0.17 mm) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lyso-Gb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lyso-Gb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management.


Assuntos
Doença de Fabry/enzimologia , alfa-Galactosidase/metabolismo , Biocatálise , Membrana Celular/metabolismo , Doença de Fabry/patologia , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , alfa-Galactosidase/genética
19.
J Am Chem Soc ; 140(15): 5045-5048, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29601200

RESUMO

Gluco-azoles competitively inhibit glucosidases by transition-state mimicry and their ability to interact with catalytic acid residues in glucosidase active sites. We noted that no azole-type inhibitors described, to date, possess a protic nitrogen characteristic for 1 H-imidazoles. Here, we present gluco-1 H-imidazole, a gluco-azole bearing a 1 H-imidazole fused to a glucopyranose-configured cyclitol core, and three close analogues as new glucosidase inhibitors. All compounds inhibit human retaining ß-glucosidase, GBA1, with the most potent ones inhibiting this enzyme (deficient in Gaucher disease) on a par with glucoimidazole. None inhibit glucosylceramide synthase, cytosolic ß-glucosidase GBA2 or α-glucosidase GAA. Structural, physical and computational studies provide first insights into the binding mode of this conceptually new class of retaining ß-glucosidase inhibitors.


Assuntos
Azóis/farmacologia , Inibidores Enzimáticos/farmacologia , beta-Glucosidase/antagonistas & inibidores , Azóis/síntese química , Azóis/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Conformação Molecular , beta-Glucosidase/metabolismo
20.
J Am Chem Soc ; 139(40): 14192-14197, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28937220

RESUMO

Human nonlysosomal glucosylceramidase (GBA2) is one of several enzymes that controls levels of glycolipids and whose activity is linked to several human disease states. There is a major need to design or discover selective GBA2 inhibitors both as chemical tools and as potential therapeutic agents. Here, we describe the development of a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) assay for the rapid identification, from a 350+ library of iminosugars, of GBA2 inhibitors. A focused library is generated based on leads from the FluoPol-ABPP screen and assessed on GBA2 selectivity offset against the other glucosylceramide metabolizing enzymes, glucosylceramide synthase (GCS), lysosomal glucosylceramidase (GBA), and the cytosolic retaining ß-glucosidase, GBA3. Our work, yielding potent and selective GBA2 inhibitors, also provides a roadmap for the development of high-throughput assays for identifying retaining glycosidase inhibitors by FluoPol-ABPP on cell extracts containing recombinant, overexpressed glycosidase as the easily accessible enzyme source.


Assuntos
Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Polarização de Fluorescência/métodos , Imino Açúcares/farmacologia , beta-Glucosidase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Glucosilceramidase , Humanos , Imino Açúcares/química , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...